The maximal total irregularity of some connected graphs

author

Abstract:

The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the maximal total irregularity of some connected graphs

the total irregularity of a graph g is defined as 〖irr〗_t (g)=1/2 ∑_(u,v∈v(g))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈v(g). in this paper by using the gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

full text

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

full text

The irregularity and total irregularity of Eulerian graphs

For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all ‎connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.

full text

total vertex irregularity strength of corona product of some graphs

a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...

full text

Group irregularity strength of connected graphs

We investigate the group irregularity strength (sg(G)) of graphs, that is, we find the minimum value of s such that for any Abelian group G of order s, there exists a function f : E(G) → G such that the sums of edge labels at every vertex are distinct. We prove that for any connected graph G of order at least 3, sg(G) = n if n = 4k + 2 and sg(G) ≤ n + 1 otherwise, except the case of an infinite...

full text

On total vertex irregularity strength of graphs

Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  121- 128

publication date 2015-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023